Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.16.23284640

ABSTRACT

There are many factors in the current phase of the COVID-19 pandemic that signal the need for new modeling ideas. In fact, most traditional infectious disease models do not address adequately the waning immunity, in particular as new emerging variants have been able to brake the immune shield acquired either by previous infection by a different strain of the virus, or by inoculation of vaccines not effective for the current variant. Furthermore, in a post-pandemic landscape in which reporting is no longer a default, it is impossible to have reliable quantitative data at the population level. Our contribution to COVID-19 post-pandemic modeling is a simple mathematical predictive model along the age-distributed population framework, that can take into account the waning immunity in a transparent and easily controllable manner. Numerical simulations show that under static conditions, the model produces periodic solutions that are qualitatively similar to the reported data, with the period determined by the immunity waning profile. Evidence from the mathematical model indicates that the immunity dynamics is the main factor in the recurrence of infection spikes, however, irregular perturbation of the transmission rate, due to either mutations of the pathogen or human behavior, may result in suppression of recurrent spikes, and irregular time intervals between consecutive peaks. The spike amplitudes are sensitive to the transmission rate and vaccination strategies, but also to the skewness of the profile describing the waning immunity, suggesting that these factors should be taken into consideration when making predictions about future outbreaks.


Subject(s)
COVID-19 , Poult Enteritis Mortality Syndrome , Communicable Diseases
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2005.06137v2

ABSTRACT

Mathematical models of SARS-CoV-2 spread are used for guiding the design of mitigation steps aimed at containing and decelerating the contagion, and at identifying impending breaches of health care system surge capacity. The challenges of having only lacunary information about daily new infections are compounded by the geographic heterogeneity of the population. To address this problem, we propose to account for the differences between rural and urban settings using network-based, distributed models where the spread of the pandemic is described in distinct local cohorts with nested SEIR models. The setting of the model parameters takes into account the fact that SARS-CoV-2 transmission occurs mostly via human-to-human contact, and that the frequency of contact among individuals differs between urban and rural areas, and may change over time. Moreover, the probability that the virus spreads into an uninfected community is associated with influx of individuals from other communities where the infection is present. To account for these important aspects, each node of the network is characterized by the frequency of contact between its members and by its level of connectivity with other nodes. Census and cell phone data can be used to set up the adjacency matrix of the network, which can, in turn, be modified to account for different levels of mitigation measures. In order to make the network SEIR model that we propose easy to customize, it is formulated in terms of easily interpretable parameters that can be estimated from available community level data. The models parameters are estimated with Bayesian techniques using COVID-19 data for the states of Ohio and Michigan. The network model also gives rise to a geographically distributed computational model that explains the geographic dynamics of the contagion, e.g., in larger cities surrounded by suburban and rural areas.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2005.04365v2

ABSTRACT

In this article, we consider a dynamic epidemiology model for the spread of the COVID-19 infection. Starting from the classical SEIR model, the model is modified so as to better describe characteristic features of the underlying pathogen and its infectious modes. In line with the large number of secondary infections not related to contact with documented infectious individuals, the model includes a cohort of asymptomatic or oligosymptomatic infectious individuals, not accounted for in the data of new daily counts of infections. A Bayesian particle filtering algorithm is used to update dynamically the relevant cohort and simultaneously estimate the transmission rate as the new data on the number of new infections and disease related death become available. The underlying assumption of the model is that the infectivity rate is dynamically changing during the epidemics, either because of a mutation of the pathogen or in response to mitigation and containment measures. The sequential Bayesian framework naturally provides a quantification of the uncertainty in the estimate of the model parameters, including the reproduction number, and of the size of the different cohorts. Moreover, we introduce a dimensionless quantity, which is the equilibrium ratio between asymptomatic and symptomatic cohort sizes, and propose a simple formula to estimate the quantity. This ratio leads naturally to another dimensionless quantity that plays the role of the basic reproduction number $R_0$ of the model. When we apply the model and particle filter algorithm to COVID-19 infection data from several counties in Northeastern Ohio and Southeastern Michigan we found the proposed reproduction number $R_0$ to have a consistent dynamic behavior within both states, thus proving to be a reliable summary of the success of the mitigation measures.


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL